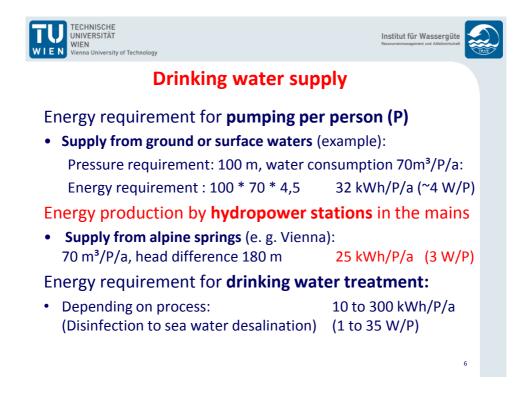


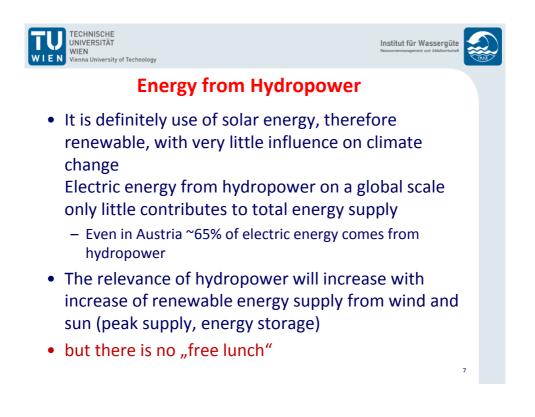
Water and Energy

IWA workshop on Water and Energy/Water Loss Tokyo, April 8, 2014

Prof. Helmut Kroiss IWA President elect Vienna University of Technology

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology	Institut für Wassergüte Ressurcennangement und Abfallwirtschaft			
"Our" actual energy environment Mean continuous power in kW per inhabitant				
Solar irradiation, our source of life: – Total solar power reaching our globe (climate) – Fresh water circuit (evaporation)	10,000 5,000			
 Power of humans and our "Slaves" Power of an adult person: Power of our brain Power behind a flash of genius ? Total Primary power input (~50 slaves/P) 	0.1 0.015 <0.001 ~5			
 Electric power at home including nutrition Electronic equipment and communication 	0.7 >0.1			




Institut für Wassergüte

Drinking water and energy requirements (pumping, treatment, recovery)

only orders of magnitude

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology	Institut für Wassergüte Resourcemanagement und Abfaltertschaft
Pumping energy for water su expressed in Wh/m³/m	ylqqı
 To lift 1 m³ of water by 1 m the theoretical energy requirement is 	2,7 Wh
 Under practical conditions at a drinking water supply network 	≥ 4,0 Wh
 "Hydro-power" production from 1m³ with a head-difference of 1 m 	≤. 2 <i>,</i> 4 Wh

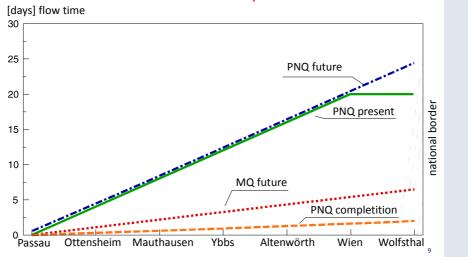
Institut für Wassergüte

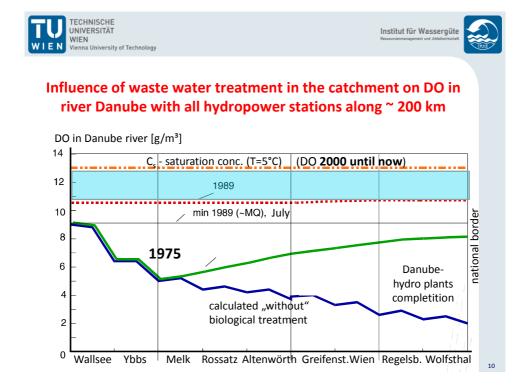
Problems with hydropower

• Water quality problems:

- Morphology: Barriers in riverine ecosystems (e.g. fish)
- Increased detention time of the water especially during low flow reduces biol. water quality (increase of eutrophication, temperature, anoxia, organic sediments)
- Alteration of the water table and hence of the exchange between surface and ground water (DW supply)
- Problems associated with sediment transport:
 - Sedimentation of bed load, erosion (lack of sediments), high flow damages

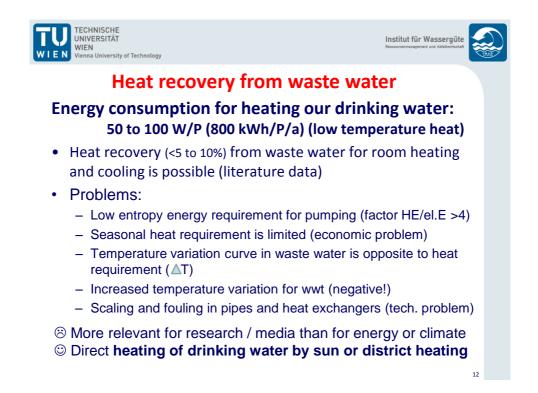
Hydro power stations are only compatible with water quality requirements if all relevant accompanying measures are implemented!

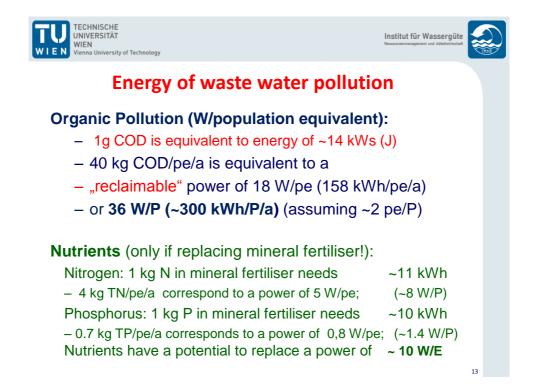



Institut für Wassergüte Ressourcenmanagement und Abfallwirtschaft

Detention time of water in river Danube

with and without river power stations

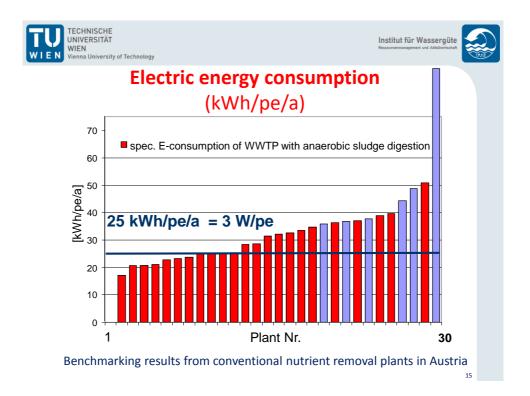


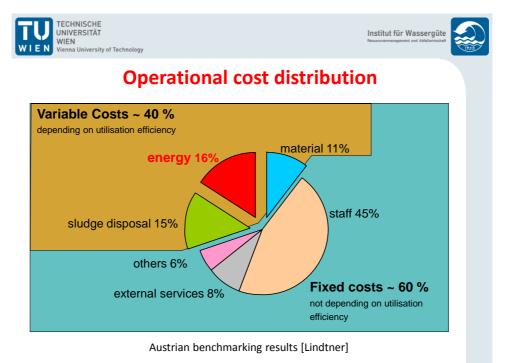


11

Energy and waste water

- Heat recovery from used water
- Energy recovery from organic pollution

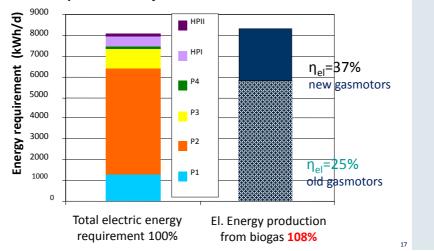



Institut für Wassergüte

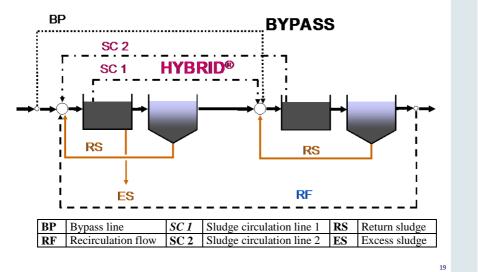
14

Municipal nutrient removal treatment plants with no external energy requirement

(without external substrate addition) using the energy contained in organic pollution



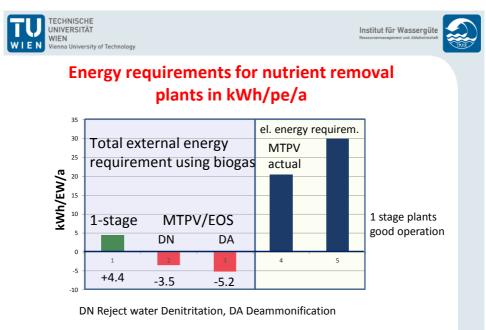
The first Austrian energy-self sufficient plant Strass/Tirol (170.000 PE) [Wett, Lindtner]



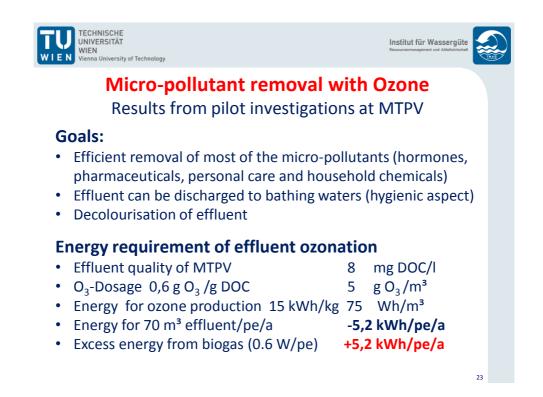


Institut für Wassergüte Ressourcenmanagement und Abi Sirtschaft

Process scheme of the 2- stage activate sludge treatment developed at TU Vienna



21


Energy balance comparison

	Dim	1-stage η _N = 80%	MTPV/EOS η _N = 75%	HKA actually
"aeration efficiency"	kgO₂/kWh	2,0	2,0	Raw sludge
η _{el} gasmotor	%	38	38	Incinera- tion
Power for aeration	W/EW	1,6	1,25	2,26
Other power requirements	W/EW	0,80	1,10	to 2,33
Biogas el. power prod	W/EW	1,9	2,75	-
Total el. power requ.	W/EW	+ 0,5	- 0,4	2,3
El. Energy requ.	kWh/EW/a	+ 4,4	- 3,5	20,4

EOS Project (2020): MTPV with digestion, 75 % N-removal, reject water nitritation+Deni in AT 1

Δ Energie DA versus DN for 3 Mio pe : 5,2 – 3,5 =1,7; 1,7 ∗ 3 = 5 Mio kWh/a (~ 500.000 €/a)

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technolog

Institut für Wassergüte

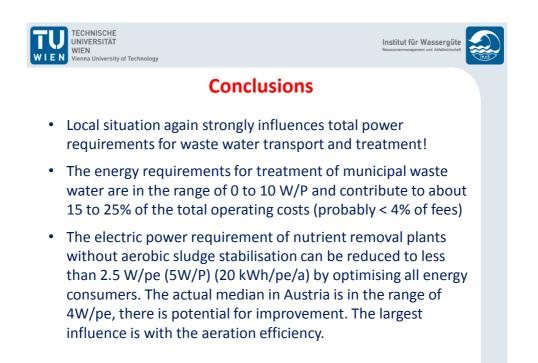
üte schaft

24

Conclusions

- Energy considerations for water systems have to be based on 1st and 2nd law of thermodynamics (electrical, mechanical, biochemical, heat)
- Water infrastructure (transport and treatment) needs low entropy power in the range of 0 to about 400W/P. In most cases the power requirement is relevant for the municipalities but not for regional energy management.
- Local situation is more relevant for all energy considerations than e.g. treatment efficiency requirements for waste water treatment. E.g. primary power consumption varies between 2 and 14 kW/P (20 to 140 "slaves" per person) and global solar irradiation is in the range of 10,000 kW/person.

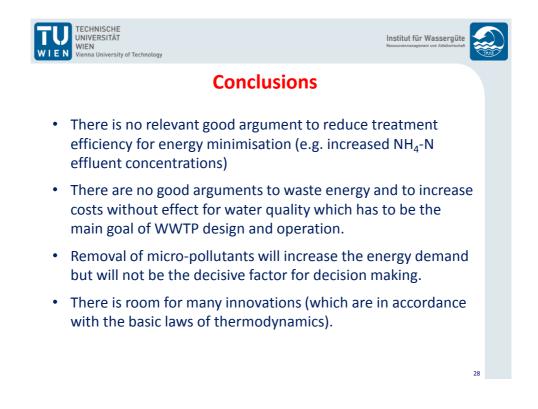
TU	TECHNISCHE UNIVERSITÄT WIEN
WIEN	Vienna University of 1


echnology

25

Conclusions

- Power requirement for drinking water supply is strongly dependent on local morphology and the quality, availability and location of raw water sources.
- Hydropower, a renewable energy, will probably play an increasing role in energy management, but has to be linked to all necessary accompanying measures to avoid the associated negative impacts on water quality and sediment transport.
- The largest energy input into waste water is for heating (50 to 100 W/P). This high entropy energy can be recovered up to about 10% from the technological aspect, economic use for room heating and cooling is very limited. It can be recommended to use solar irradiation instead of electric energy.



	TECHNISCHE UNIVERSITÄT WIEN Vienna University of Tec
--	---

Conclusions

- By using anaerobic sludge digestion and biogas conversion to electric energy the total external energy demand can be reduced to about 0.5 W/pe. By using 2-stage AS treatment even a slight excess power can be produced (0.6 W/pe). High biogas conversion efficiency has a dominant effect.
- The contribution of energy minimisation at WWTP to climate change abatement is crucial: 5% loss of biogas and/or a slight increase of N₂O emissions to the atmosphere completely compensate for CO₂ emission reduction.

29

30

We cordially invite you all to the

IWA WORLD WATER CONGRESS and EXHIBITION

Lisbon, Portugal

September 21 – 26, 2014

NIVERSITÄT /IEN ienna University of Technology Institut für Wassergüte Resssurcenmanagement und Abfallwirtschaft

Thank you for your attention!

Helmut Kroiss